MOLAR HEAT CAPACITIES OF THE TELLURITES CoTeO₃, MnTeO₃ AND MnTe₆O₁₃ IN MEDIUM TEMPERATURE RANGE

G. Gospodinov¹ and L. Atanasova^{2*}

¹Inorganic Chemistry Department, University 'Prof. Assen Zlatarov' – Bourgas, 8010 Bourgas, Bulgaria ²Inorganic Chemical Technology Department, University 'Prof. Assen Zlatarov' – Bourgas, 8010 Bourgas, Bulgaria

The temperature dependence of the molar heat capacities of the tellurites CoTeO₃, MnTeO₃ and MnTe₆O₁₃ are determined. By statistical manipulation of the values obtained, the parameters in the equations for the corresponding compounds showing this dependence are determined using the least-squares method. These equations and the standard molar entropies are used to determine the thermodynamic functions $\Delta_0^T S_m^0$, $\Delta_T^T H_m^0$ and $(\Phi_m^0 + \Delta_0^T H_m^0 / T)$ for T'=298.15 K.

Keywords: molar heat capacity, tellurites of cobalt, tellurites of manganese

Introduction

The presented paper is the continuation of the previous studies of the authors [1]. The data concerning the tellurites of cobalt and manganese are rather scarce [2–4]. In [2], cobalt tellurites are obtained by heating CoCO₃ and TeO₂ in a nitrogen atmosphere. The compounds are synthesised at 720 K, and at 1080 K they melt. In [3], while drawing the T–X state diagram of the system MnO–TeO₂, it is found that MnTe₆O₁₃ is synthesised too. In [4], Trömel and Schmidt studied the solid phases of {xMnO+(1–x)TeO₂} by X-ray analysis. The compounds MnTeO₃, MnTe₂O₅, Mn₂Te₃O₈ and MnTe₆O₁₃ are obtained and their crystal structure are determined. Apart from melting temperatures no other properties had been studied.

The aim of this research is to determine experimentally the specific heats and to calculate the thermodynamic values. These data are not available in literature.

Experimental

 $CoCO_3$ and $MnCO_3$ are used for the synthesis of the tellurites of cobalt and manganese. Their purity is

higher than 99.99. TeO₃ is qualified as 'exceptionally pure 7-4'. Very well homogenised mechanical mixtures of the carbonates and TeO₂ corresponding to the stoicheometry of the compounds are heated in an inert gas medium at 970 K for CoTeO₃ and MnTeO₃, and 950 K for $MnTe_6O_{13}$. After heating the samples for 2 h they are cooled, ground and subjected to thermal treatment at the same temperatures and for the same time. The samples are studied by chemical and X-ray phase analysis. Chemical analysis for metal ions are done by volume analysis [5], and TeO_2 is analysed iodometrically and gravimetrically [6, 7]. The results obtained are shown in Table 1. X-ray analysis is carried out on TURM-61 M apparatus at Fe anode and K_{α} emission. All peaks on the X-ray pattern correspond to those published in the literature regarding their intensity and interplanar distances.

Heat capacities are determined using DSC-111 differential scanning calorimeter ('Setaram', France). For that purpose, the tellurites are ground and shifted through a sieve with opening 0.25 mm². The technic used is described in [8, 9], each results for a sample is directly compared with the corresponding results for sappfhire. Four separate determinations of C_p in the whole temperature interval were made for each tellurite and the average values were calculated.

Table 1 Mass fractions of MeO and TeO2 in the tellurites CoTeO3, MnTeO3 and MnTe6O13

C 1	Calculated		Chemical analyis					
Compound	MeO	TeO ₂		MeO			TeO ₂	
CoTeO ₃	0.3195	0.6805	0.3201	0.3194	0.3190	0.6810	0.6801	0.6806
MnTeO ₃	0.3077	0.6923	0.3181	0.3075	0.3079	0.6920	0.6924	0.6923
MnTe ₆ O ₁₃	0.0690	0.9316	0.0689	0.0692	0.0694	0.9312	0.9308	0.9311

* Author for correspondence: lgatanasova@btu.bg

<i>T</i> /K —		$C_{\mathrm{p,m}}/\mathrm{J}~\mathrm{K}^{-1}~\mathrm{mol}^{-1}$		T/V	$C_{\rm p,m}/{ m J~K^{-1}~mol^{-1}}$		
	CoTeO ₃	MnTeO ₃	MnTe ₆ O ₁₃	I/\mathbf{K}	CoTeO ₃	MnTeO ₃	MnTe ₆ O ₁₃
400	74	126	462	500	90	133	502
410	75	126	464	510	92	133	502
420	76	127	467	520	92	133	518
430	78	128	466	530	44	134	524
440	79	129	468	540	95	133	526
450	81	130	472	550	95	133	526
460	84	130	477	560	97	133	524
470	85	130	481	570	98		531
480	87	132	484	580	99		531
490	88	133	496				

Table 2 Experimental molar heat capacities $C_{p,m}$ of CoTeO₃, MnTeO₃ and MnTe₆O₁₃

Table 3 Standard molar thermodynamic functions $\Delta_0^{T'} S_m^0$ and temperature dependences of the molar heat capacities $C_{p,m}$ of CoTeO₃, MnTeO₃ and MnTe₆O₁₃, T'=298.15 K

Compound	$\Delta_0^{ m T'} {S_{ m m}^{ m 0}}/{ m J}~{ m K}^{-1}~{ m mol}^{-1}$	а	b	С	$\delta C_{\rm p}/C_{\rm p}\cdot 10^2$
CoTeO ₃	123.36	15.94	$145.71 \cdot 10^{-3}$	$0.046 \cdot 10^5$	0.96
MnTeO ₃	150.59	139.34	$5.12 \cdot 10^{-3}$	24.63·10 ⁵	0.47
MnTe ₆ O ₁₃	482.29	170.33	594.96·10 ⁻³	$-78.52 \cdot 10^{5}$	0.92

Result and discussion

The obtained values for the temperature interval 400–580 K are shown in Table 2. The temperature dependencies of the heat capacities of solid crystalline substances at temperatures higher than 298 K are determined using the following equations, depending on some properties of the substances studied:

$$C_{p,m}(T)/J \text{ K}^{-1} \text{ mol}^{-1} = a + b(T/\text{K}) + \dots$$
 (1)

$$C_{\rm p,m}(T)/J \ {\rm K}^{-1} \ {\rm mol}^{-1} = a + b(T/{\rm K}) - c(T/{\rm K})^{-2}$$
 (2)

Equation (1) describes the temperature dependences of the heat capacity of substances with lower Debye temperature, Q_D (Q_D <298.15 K). In this case, the temperature dependence of the heat capacity increases linearly with temperature, i.e. the heat ca-

Fig. 1 Dependence of molar heat capacity of CoTeO₃ on temperature in the temperature range 300–700 K, calculated by the polynomial $C_{p,m}(T)/J \text{ K}^{-1} \text{ mol}^{-1}=15.94+145.71\cdot 10^{-3}T$ –0.046·10⁵T⁻²

pacity obeys the law of Einstein $c \sim aT$. Equation (2), called also equation of Meyer-Kelly, corresponds to faster change of the heat capacity at comparatively lower temperatures and practically constant dC_p/dT at higher temperatures. It is usually used to describe the temperature dependence of the heat capacity of solid substances with higher Debye temperature $(Q_{\rm D} \ge 298.15 \text{ K})$ and corresponds to $C_{\rm p}(T)$ dependence more complex than the linear one. When these considerations are not taken into account, then the extrapolation would give abrupt change of C_p curve both at low and high temperature and its physical meaning can not be sensibly explained.

The values from the Table 2 are processed by computer and the parameters of Eq. (2) are evaluated. The coefficients a, b and c are given in Table 3.

Fig. 2 Dependence of molar heat capacity of MnTeO₃ on temperature in the temperature range 300–700 K, calculated by the polynomial $C_{p,m}(T)/J \text{ K}^{-1} \text{ mol}^{-1}=139.34+5.12\cdot 10^{-3}T-24.63\cdot 10^{5}T^{-2}$

The standard thermodynamic characteristics and the temperature dependences of the heat capacities of $CoTeO_3$, $MnTeO_3$ and $MnTe_6O_{13}$ are presented in Table 3 and Figs 1–3.

The standard molar entropy (at 298.15 K) is calculated by ion increments' method introduced by Kumok [10] and for different temperature by formula (3) [11]:

$$\Delta_0^{\rm T} S_{\rm m}^{\,0} = S_{\rm T}^{\,0} - S_{298.15}^{\,0} = \int_{298.15}^{\rm T} \frac{C_{\rm p}(T)}{T} {\rm d}T \tag{3}$$

Table 4 Molar thermodynamic functions of CoTeO₃, T'=298.15 K

The changes in enthalpies are calculated analogically by formula (4):

$$\Delta_{0}^{T}H_{m}^{0} = H_{T}^{0} - H_{298.15}^{0} = \int_{298.15}^{1} C_{p}(T) dT$$
(4)

The functions Φ^* and Φ^{**} allows the calculation of the free Gibbs energy. These functions correspond more to system of the modern thermodynamic manuals. The base temperature for Φ^{**} shows 298.15 K, and for Φ^* we accept 0 K for base temperature. These

<i>T</i> /K	$C_{\rm p,m}/{ m J~K}^{-1}~{ m mol}^{-1}$	$\Delta_0^{\rm T} S_{\rm m}^{0} / { m J} \ { m K}^{-1} \ { m mol}^{-1}$	$\Delta_{\mathrm{T}}^{\mathrm{T}} H_{\mathrm{m}}^{0} / \mathrm{J} \mathrm{mol}^{-1}$	$(\Phi_{\rm m}^{\rm 0} + \Delta_{\rm 0}^{\rm T'}H_{\rm m}^{\rm 0}/T)/{\rm J~K^{-1}~mol^{-1}}$
298.15	59.31	123.36	0.00	123.36
300	59.60	123.76	118.90	123.36
350	66.90	133.49	3281.34	124.12
400	74.20	142.90	6808.57	125.88
450	81.49	152.06	10700.42	128.28
500	88.78	161.02	14956.77	131.11
550	96.06	169.83	19577.56	134.23
600	103.35	178.50	24562.74	137.56
650	110.64	187.06	29912.27	141.04
700	117.93	195.53	35626.14	144.63

Table 5 Molar	thermodynamic	functions of MnTeO ₃ , $T'=$	298.15 K
	2	57	

<i>T</i> /K	$C_{\rm p,m}/{ m J}~{ m K}^{-1}~{ m mol}^{-1}$	$\Delta_0^{\rm T} S_{\rm m}^{0} / { m J} \ { m K}^{-1} \ { m mol}^{-1}$	$\Delta_{\mathrm{T}}^{\mathrm{T}}$, H_{m}^{0} /J mol ⁻¹	$(\Phi_{\rm m}^{0} + \Delta_{0}^{\rm T'}H_{\rm m}^{0}/T)/{\rm J}~{\rm K}^{-1}~{\rm mol}^{-1}$
298.15	113.13	130.59	0.00	130.59
300	113.51	131.35	226.64	130.59
350	121.02	149.45	6103.98	132.01
400	125.99	165.96	12287.34	135.24
450	129.48	181.01	18678.97	139.50
500	132.05	194.79	25220.24	144.35
550	134.01	207.47	31873.82	149.52
600	135.57	219.20	38614.84	154.84
650	136.84	230.10	45426.07	160.22
700	137.90	240.28	52295.21	165.58

Fable 6 Molar thermo	dynamic functior	is of $MnTe_6O_{13}$,	<i>T′</i> =298.15 K
-----------------------------	------------------	------------------------	---------------------

<i>T</i> /K	$C_{\rm p,m}/{ m J~K}^{-1}~{ m mol}^{-1}$	$\Delta_0^{\rm T} S_{\rm m}^{0} / { m J} \ { m K}^{-1} \ { m mol}^{-1}$	$\Delta_{\mathrm{T}}^{\mathrm{T}} \mathcal{H}_{\mathrm{m}}^{0} / \mathrm{J} \mathrm{mol}^{-1}$	$(\Phi_{\rm m}^{0} + \Delta_{0}^{\rm T'}H_{\rm m}^{0}/T)/{\rm J}~{\rm K}^{-1}~{\rm mol}^{-1}$
298.15	436.05	482.29	0.00	482.29
300	436.06	485.21	872.11	482.30
350	442.66	552.78	22795.75	487.65
400	457.39	612.79	45272.04	499.61
450	476.84	667.75	68612.55	515.28
500	499.22	719.13	93004.24	533.12
550	523.51	767.83	118566.08	552.26
600	549.12	814.48	145377.38	572.18
650	575.64	859.47	173493.05	592.56
700	602.83	903.12	202952.30	613.19

Fig. 3 Dependence of molar heat capacity of $MnTe_6O_{13}$ on temperature in the temperature range 300–700 K, calculated by the polynomial $C_{p,m}(T)/J \text{ K}^{-1} \text{ mol}^{-1}=170.33+594.96\cdot 10^{-3}T+78.52\cdot 10^{5}T^{-2}$

functions are affected by the changes in heat capacities of solid compounds on temperature by the following dependence:

$$\Phi_{\rm T}^{**} = S_{\rm T}^{0} - \frac{H_{\rm T}^{0} - H_{298.15}^{0}}{T}$$
(5)

$$\Phi_{\rm T}^* = \Phi_{\rm T}^{**} - \frac{H_{298.15}^0 - H_0^0}{T} \tag{6}$$

The calculation of the two functions is needed to the extent of getting acquainted with Gibbs thermodynamic potential for formation of compounds. The functions Φ^* and Φ^{**} permits the calculation of free Gibbs energy, which is an important factor for thermodynamical interpretation of complex multi-co mponent systems. In Tables 4–6 below the cited thermodynamic potential $\Phi^0_m + \Delta^{T_i}_0 H^0_m / T$ is shown the Gibbs potential Φ^{**} . Using the results from Table 3 and Eqs (3)–(4), the thermodynamic functions of CoTeO₃, MnTeO₃ and MnTe₆O₁₃ are calculated (Tables 4-6).

References

- 1 G. Gospodinov and L. Atanasova, J. Therm. Anal. Cal., 82 (2005) 439.
- 2 I. N. Sokolov, K. K. Samplavskaia and M. H. Karapetiants, Rus. J. Inorg. Chem., 22 (1977) 2323.
- 3 Y. Y. Ivanova, Materials Chemistry, 7 (1982) 449.
- 4 M. Trömel and D. Schmidt, Z. Anorg. Allg. Chem., 387 (1972) 230.
- 5 G. Charlot, Les méthodes de la chimie analitique, Masson, Paris 1961.
- 6 S. I. Fainberg and N. A. Filipova, Analiz Rud Tsvetnih Metalov, Literatura tchernoi i tsvetnoi metalurgii, Moscow 1963.
- 7 I. I. Nazarenko and E. I. Ermakov, Analiticheskaia Chimia Selena i Telura, Nauka, Moscow 1974.
- 8 J. L. McNaughton and C. T. Mortimer, Differential Scanning Calorimetry, Perkin-Elmer Corporation, Norvalk Connection 1975, p. 11.
- 9 E. A. Bouketov, N. N. Poprukailo and V. P. Malishev, Izv. A. N. Kaz/SSR, Seria Khimicheskaia, 4 (1966) 20.
- 10 V. N. Kumok, Problema Soglasuvaniia Metodov Otzenki Termodinamicheskih Kharakteristik, Nauka, Nivosibirsk 1987, p. 108.
- 11 Ya. I. Gerasimov, A. N. Krestovnikov and A. C. Shadov, Khimicheskaia Termodinamika v Zvetnoi Metalurgiia, Moscow 1973, p. 296

Received: October 17, 2005 Accepted: November 18, 2005

DOI: 10.1007/s10973-005-7401-5